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  Detecting if a population is in decline is an important objective for biologists and 
conservationists who are monitoring threatened populations.   As genetic methods improve 
effective population size (Ne) and effective number of breeders (Nb) continue to gain popularity 
as a way to monitor species.  Using simulated populations and linkage disequilibrium, we 
explored detecting population decline through Nb in age structured populations.  Through 
comparisons of sensitivity (1 – false negatives) and specificity (1- false positives) over 1000 
replicates, we explored how factors such as starting Nb, number of SNPs, number of individuals 
sampled, number of breeding cycles monitored, and rate of decline affected the ability to detect 
changes in the population.  Overall, we found Nb can be an effective metric for detecting 
population declines, if some care is taken during study design to avoid certain conditions.  
Although specificity did not vary greatly, sensitivity was much more reactive to changes in the 
factors tested.  Under-sampling of the population (< true Nb), insufficient number of breeding 
cycles monitored (<7 cycles) and low levels of decline (e.g. <7%), are all detrimental to 
detection of population change.     
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Introduction 

Population decline is a potential strong indicator of an extinction event (Collen et al.  2011). 

Small populations are especially sensitive to genetic effects such as inbreeding depression and 

lack of allele diversity. These effects make the populations especially susceptible to extirpation 

(Mace et al. 2008).  Regular, usually annual, sampling of a species of interest, is used by 

conservationists to monitor populations and create management plans to help these populations 

recover and remain at safe population levels. 

 

Genetic drift describes stochastic changes of allele frequencies in a population during 

reproduction, independent from selection or mutation (Hartl and Clark 1998).  Assumptions such 

as random mating, constant population size, and equal sex ratio, allows changes in allele 

frequency in the next generation to be modeled as a multinomial distribution.  This concept is 

used in the Wright-Fisher model to simulate genetic drift in populations.  

 

The most straightforward way to detect changes in the size of a population is to take a census 

of the adults.  The adult census size (Nc) can be also be determined through estimation 

techniques such as mark and recapture.  These methods can be inaccurate or difficult 

depending on the population being studied (Luikart et al. 2010). For example, in some fish 

populations with large, difficult to access habitats, such as the ocean, population census size 

can be difficult to estimate. 

 

Effective population size (Ne) is traditionally defined in terms of a Wright-Fisher model that has 

the same rate of genetic drift as the observed population (Hartl and Clark 1998).   Ne can also 

describe the size of an Wright-Fisher population that loses heterozygosity at the same rate as 
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the observed population.  Ne estimations have a relationship to Nc based on many factors such 

as the life history of the species, reproductive success, and family structure. (Cornuet and 

Luikart 1996; Perrier et al. 2016).  Ne can be calculated from the distribution of alleles among 

individuals of a population.  Not only is it another metric for monitoring population size but it also 

includes important information about the genetic diversity of a population (Perrier et al.,2016), 

which can indicate susceptibility to genetic drift, inbreeding depression, or loss of adaptive 

ability (Hare 2011; Mace et al. 2008). 

 

Effective number of breeders (Nb) is a refinement of Ne, adding the stipulation that all sampled 

members belong to the same cohort (are produced during the same breeding cycle).  The 

number and genetic composition of the reproductively successful individuals of the parental 

generation is the primary factor reflected in the calculation of Nb (Whiteley et al. 2017), hence Nb 

can be calculated from a non-breeding cohort.  Because Nb data is processed the same as Ne 

only with a shorter timeframe, Nb is a more accurate measure of the population's current genetic 

heath.  The cohort restriction of Nb is especially applicable for some species such as bull trout 

(Salvelinus confluentus) that can be sampled at spawning ensuring that every sampled 

individual is from the same cohort (Perrier et al. 2016).  

 

Nb also provides more information on individual species’ breeding habits, such as sexual 

selection and family structure (Whiteley et al. 2015).  Whiteley et al. (2015) also found there is 

no simple direct relationship between Nb and Nc in their salmonid populations, suggesting that 

Nb is affected by much more than just adult abundance.  In contrast Bernos, and Fraser (2016) 

found that Nb and Nc were positively correlated in wild brook trout (Salvelinus fontinalis) 

populations although the Nb/Nc ratio fluctuated over time.  
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Estimation techniques for both Ne and Nb suffer from bias when used on age structured 

populations.  This bias in Nb’s case can be corrected through use of the estimate of an 

empirically derived Nb/Ne ratio (Waples et al. 2014).  For Ne this bias is not as easily or efficiently 

corrected as the severity depends on the number of cohorts being sampled.   

 

 Estimates of the Ne/Nc and Nb/Ne ratios can be calculated from life history traits, primarily 

longevity and sexual maturity. Waples et al. (2014) derived an empirical relationship between 

Nb, Ne and Nc, and included it in a program called AgeNe, based on the lifetables of the species 

(Waples et al. 2011, Waples et al. 2013). These lifetables describe survival and reproductive 

rates of a species as they age, usually on a per gender basis.  Although these derived methods 

are useful for rough estimations, they ignore the stochastic forces (e.g. genetic drift), to address 

the effect of these forces requires simulation over purely deterministic approaches. 

 

Simulation modeling is an important tool in evolutionary biology. Simulations help test 

hypotheses under controlled and ideal situations that do noyt occur in a natural environment 

where there are unknown and uncontrollable factors influence the results.  One class of 

simulator, known as forward-time simulators, are used to simulate successive reproduction in 

usually isolated populations (Yuan et al. 2012).  Forward simulators provide insight into the 

evolutionary processes by modeling the stochastic forces involved, such as random mating and 

survival.  Forward simulators become increasingly complex as additional genetic and 

environmental factors are added to the simulation (Peng et al.  2005).   

 

Simupop is a highly extensible forward time simulator based on the Wright-Fisher model (Peng 

and Kimmel 2005; Peng and Amos 2008).  Waples et al (2014) developed a population genetics 

model that extended Simupop to simulate multi-generational age structured populations, 

implemented by using lifetables to describe the population’s gender and age structure. 
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The most used method to calculate Nb and Ne uses linkage disequilibrium (LD) (Luikart et al.  

2010).  The LD method calculates Ne or Nb by measuring the statistical unlikeliness of allele 

occurrences between pairs of loci in the population (Waples and Do 2008; Hill and Robertson 

1968; Luikart et al. 2010).  This is to say assuming all loci are independent, LD is based on the 

measuring how the observed occurrences deviate from the expected frequencies.  The LD 

method was previously seen as less accurate than the more conventional temporal method 

when the number of individuals sampled was less than Ne (Luikart et al.  2010).  Advances by 

Waples (2006) corrected this bias empirically.  The LD method heavily weights the effects of 

genetic drift (Luikart et al.  2010).  This makes the LD method better for applications requiring 

fast responses such as monitoring threatened species. 

 

Sensitivity, specificity, and receiver operating characteristic (ROC) curves were used to quantify 

and illustrate the efficacy of using Nb to detect changes in population size, because the Nb test 

is a binary classifier system.   In this context sensitivity is the probability that a change in 

population size is detected when the population size is changing, and specificity is the 

probability that no change in population size is detected when the population size is stable.  For 

specificity, higher values indicate increased detection of stability in the population. Higher 

sensitivities indicate increased detection of changes in the population.  ROC curves are used to 

illustrate the tradeoffs between sensitivity and specificity by graphing the changes in sensitivity 

as false positive rate (1 - specificity) is changed.  The ROC curve provides a visualization of 

how well a change in population size can be detected using Nb and how close the Nb test is to a 

perfect test, one with sensitivity and specificity of one.   

Hypotheses 
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Nb can be an effective metric for monitoring changes in population size. We want to determine 

under what circumstances it can be applied to successfully monitor a population, and then 

evaluate the effect of some factors on the sensitivity and specificity of using Nb to detect decline 

in Nc.  This was accomplished by evaluating the following hypotheses, with the assumption of 

no mutation or selection, and no environmental factors. 

 Box 1: Factors explored in this study 

Null 1: Changes in census size (Nc) will be undetectable using Nb 

over a short timeframe (≤10 breeding cycles) in small (≤100Nb), 

near Wright-Fisher populations. 

 

Alternative 1: Changes in Nc are detectable using Nb over a 

short time span in small, near Wright-Fisher populations. 

 

Null 2: Stability of Nc is undetectable over a short time scale 

(≤10 breeding cycles) in small (≤100Nb), near Wright-Fisher 

populations. 

 

Alternative 2: Stability of Nc is detectable over a short time span 

in small, near Wright-Fisher populations. 

 

We designed our hypotheses to be two sided because depending on the study either growth or 

depression may be of interest.  

 

We also tested the robustness of these alternatives by weakening several of the assumptions of 

the Wright-Fisher model and how some common factors affect detection rates (Box 1). 

 

 Factors: 

• Number of SNPs evaluated 

 

• Starting Nb 

 

• Number of breeding cycles 

monitored 

 

• Severity of decline 

 

• Number of individuals 

sampled 
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The first null hypothesis is tested by simulating a stable population to burn-in, then enforcing a 

5%, 7%, 10%, and 15% decline from that point forth.  Each simulated decline is sampled at 

each breeding cycle and Nb is calculated from the youngest cohort for a span of five, seven and 

ten breeding cycles.  

 

The second null hypothesis is tested by simulating a stable population to burn-in, and 

calculating Nb from the youngest cohort with sampling as in the first hypothesis.   

Methods 

Details of Simulations. 

 

Using Simupop we simulated structured populations through successive breeding cycles under 

various scenarios of population decline.  Each simulation was set to track 400 single nucleotide 

polymorphisms (SNPs) for 10 cycles after a burn in period at zero decline.  After the burn in 

period all new members of the population were recorded, and the prescribed decline (as 

specified later) was imposed by removing a percentage of the individuals from the population. 

 

We determined Nb for each breeding cycle by using the LD method on the young of year (YoY) 

cohort of each breeding cycle.  We then performed linear regression analysis on the Nb values 

over a period of five, seven and ten years, allowing us to look for significant trends.  By 

replicating this stochastic process, a thousand times for each permutation of the test variables 

with a known decline in Nc, we experimentally determined how accurately changes in Nc are 

reflected by changes in Nb.  
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The LD method was implemented using the program LDNE v.1 (Waples And Do 2008).  Using 

the YoY cohort, the one produced that cycle, maximizes the number of individuals that can be 

sampled.  After calculating Nb we applied a bias adjustment based on the Nb/Ne ratio to increase 

the accuracy of Nb calculations (Waples 2014).  

 

Both of these programs were integrated into the program AgeStructNe which adds a graphical 

interface designed by Ted Cosart and other quality of life changes to make these programs 

easier to use (Hand Unpublished). 

Variables Changed During Population Simulation 

 

To determine how changes in Nc are reflected in Nb, simulated a number of different decline 

situations.  To test the specificity of this technique we used a 0% decline (steady population) as 

a control.  Sensitivity to decline was tested by simulating declines at the 5%, 7%, 10%, and 15% 

level every breeding cycle for 10 cycles.  This simulates a range of continuous declines that 

covers the transition to effectiveness of Nb as a useful measure of decline, as per our 

investigative tests.   

 

We tested populations starting at 25, 50 and 100 Nb to determine how the different initial Nb 

levels affected the ability to detect a steady decline. The choice to explore low Nbs was based 

on 2 factors: that population decline is of much greater interest when Nb is already low, that is 

when the threat of extinction is high, and that genetic drift has the greatest effect on a 

population when Nb is low.  In bull trout at 25 Nb had insufficient members to sample in the 

majority of cases 
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Two species were chosen from the tables verified in Waples et al. (2014).  The species were 

chosen to represent different levels of deviation from the Wright Fisher assumptions, wood frogs 

(Lithobates sylvaticus) best fit the Wright-Fisher assumptions; short lifespan, most of the active 

breeding population is about one breeding cycle old, and there are equal survival rates for both 

genders. The other species, bull trout, have a much longer lifespan, and reach sexual maturity 

at 3 years old.  This lets us compare how Nb responds to decline in longer lived species. 

 

Figure 1:Breakdown of population by age for wood frog during 
sampling of one simulation under a 5% decline, the first age 
group (age 1) is the cohort being used to calculate Nb for the 

population, Age of maturity is 1 breeding cycle. 

 

Figure 2:Breakdown of population by age for bull trout 
during sampling during one simulation under a 5% 
decline, the first age group (age 1) is the cohort being 
used to calculate Nb for the population, Age of 
maturity is 3 breeding cycles.

 

 

Of the evolutionary forces that affect allele frequencies, genetic drift is the major contributor and 

the only one we will consider in our simulations, due to the short timespan monitored.  Selection 

has a limited effect at low effective population size outside of extreme instances of high 

selective pressure (Frankham 2005).   

 

Because of the lack of mutation, we cannot rely on reaching equilibrium over a significant 

number of breeding cycles before we start collecting data.  To determine an appropriate burn-in 
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we approximated when heterozygosity of the system reached a level near what is seen in 

nature.  Starting heterozygosity between 0.4 and 0.25 was determined to have little effect on Nb 

variance (Luikart, unpublished), hence we decided on a heterozygosity of 0.3 for SNPs.  How 

many breeding cycles of burn-in to use was determined by averaging the breeding cycle when 

the heterozygosity fell below 0.3 for SNPs in sample simulations.  Each sample simulation was 

performed 10 times for each Nb and species combination using 400 SNPS.  The critical 

breeding cycles were recorded, averaged, and rounded down to the nearest integer (Table 1). 

Table 1:Table of the number of breeding cycles used for the burn-in period for each species, Nb combination. 

Species 25 Nb 50 Nb 100 Nb 

Wood Frog 88 180 367 
Bull Trout — 295 604 

Calculation of Starting Population Size  

.   

𝑁0 =
𝑁𝑏

𝑁𝑏/𝑁𝑐 ∗ 𝑁𝑐/𝑁0
       (1) 

𝑁𝑐/𝑁0 = ∑ (0.5 ∗ ∏ 𝑆𝑚

𝑖

𝑗=0

)

𝑛

𝑖=0

+ ∑ (0.5 ∗ ∏ 𝑆𝑓

𝑖

𝑗=0

)

𝑛

𝑖=0

     (2) 

 

To get the desired starting Nb in the simulation we had to calculate values for the starting 

population size and recruitment class size (𝑁0).  The initial recruitment class size to get a 

desired Nb, is sum of the cumulative products of the survival tables for male and female by age 

group adjusted by the Nb/Nc ratio where 𝑆𝑚 and 𝑆𝑓 are the survival rates for males and females 

for each age class, respectively (Equation 1 and 2).  The 𝑁𝑏/𝑁𝑐 ratios we used were 

determined by Waples et al.2014 for both species.  This gives us a good estimator of the 

number of new individuals, recruitment class, needed to maintain a specific Nb under ideal 

conditions.  The starting population will be set to twice 𝑁0 rounded up to the nearest 100 to 

allow for the population to narrow down to the desired population (Table 2). 
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Table 2: Starting N0 and Starting Individuals for each population. 

Species 25 Nb 50 Nb 100 Nb 

 (N0, Starting Size) (N0, Starting Size) (N0, Starting Size) 
Wood Frog (150,  300) (299,  600) (598,  1200) 
Bull Trout — (181,  300) (362,  800) 

 

 

We wanted to consider events whose effects were non age class specific (e.g. habitat loss).  

Simupop initially makes all the reduction in the recruitment class, leaving the juvenile and adult 

cohorts intact.  We replaced this with a reduction method that performs the percentage 

reduction equally across all age cohorts including the recruitment class.  To do this we 

separated the population into age and gender classes, then randomly select individuals from 

each class until that class has been reduced by the desired percentage, stochastically 

rounded1. 

Sampling Data 

 

To look at how variation in number of samples affected the sensitivity and specificity of detection 

we looked at sampling all permutations of three different values of SNP loci per individual and 

three different levels of individual sampling.  We calculated Nb for these combinations by 

subsampling loci and individuals from our simulated data by randomly selecting either 100, 200, 

or 400 loci and 25, 50, or 100 individuals to use to calculate Nb.  For some combinations, there 

were insufficient members of the recruitment class to sample at the desired level (Table 3).  In 

those cases, the desired value was used until no longer possible then 100% of the cohort was 

sampled for the rest of the time (Figure 3). 

                                                
1 Rounding was performed stochastically by drawing a number from a uniform distribution, then rounding 
up if that number is greater than the decimal portion, and down if less. 
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Table 3: Table of Populations that had insufficient members of the YOY 
cohort to complete sampling. 

Species Nb Decline  Cycle after 
burn-in of 
Insufficient 
Individuals  

Average 
Individuals 
after 10 
Cycles  

 100 
Individuals 
Sampled 

   

Wood Frog 50 15% 7 58.8 

Wood Frog 25 5% 8 89.8 

Wood Frog 25 7% 6 72.6 

Wood Frog 25 10% 4 52.3 

Wood Frog 25 15% 3 29.5 

Bull Trout 50 7% 9 87.6 

Bull Trout 50 10% 6 63.1 

Bull Trout 50 15% 4 35.6 

Bull Trout 100 15% 8 71.3 

 50 
Individuals 
Sampled 

   

Wood Frog 25 15% 7 29.5 

Bull Trout 50 15% 8 35.6 

 

 

Figure 3:Number of Individuals sampled for each breeding cycle in Wood 

Frog at 25 starting Nb under a 15% Decline
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Performing linear regression on Nb 

 

To determine how accurately changes in population size are reflected by changes in Nb, we 

must detect changes in Nb, then determine how these changes relate to changes in Nc.  

Changes in Nb for a set of simulations are determined by performing a least squared linear 

regression on Nb over the breeding cycles of the sampling time frame.  Because the slope of the 

linear regression is the rate of change of Nb over time, it can be used to evaluate whether to 

reject the null hypothesis for the slope of the regression at a given significance level.   

Breeding Cycles Sampled 

 

Time scale sampling was done by limiting the number of cycles to calculate the linear 

regression.  Starting at the first cycle recorded, the first cycle after our burn-in, we performed a 

least squares linear regression over the succeeding five, seven, or ten cycles. 

 

Evaluating the Hypothesis for the Slope 𝑏1 

 

To test the significance of the slope of a regression (b1), we need to determine the degrees of 

freedom of the linear regression, a test statistic, and the critical p-level.  Because the regression 

is based on Nb not Nc, and we also need to define a hypothesis to test in terms of Nb. 

 

Ho’: 𝑏1 =  0 (neutral slope) 

Ha’: 𝑏1 ≠  0 (non- neutral slope) 

 

We tested these hypotheses, with the assumption of a neutral slope. This means we will only 

determine a population is in decline if we reject this hypothesis.  We then can use the results of 
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this hypothesis to calculate the sensitivity and specificity for our original hypotheses which are in 

terms of Nc. 

Degrees of Freedom 

 

The degrees of freedom for a linear regression is 𝑛 − 2 where 𝑛 is the number of points used to 

calculate the regression. Two parameters are estimated in the linear regression, the slope 

coefficient (b1) and the intercept (b0) so the degrees of freedom are reduced by two.  Because 

only the Nb values are used in the regression, and there is one Nb value per cycle, the degrees 

of freedom for this test is based on the number of cycles monitored. This imposes a minimum 

limit on the number of sampling events, at least three breeding cycles are needed to perform 

analysis resulting in one degree of freedom (Neter 1985). 

Test Statistic 

𝑡∗ =  
𝑏1

𝑠(𝑏1)⁄                  (3) 

The test statistic (t*) for the slope of a linear regression can be calculated using the formula 

above for a normally distributed regression with a null hypothesis equal to zero, where b1 is the 

slope of the regression and s(b1) is an estimate of the variance of the slope (Neter 1985).  In 

most regression models 𝑏1  is assumed to be distributed normally.  This assumption is based on 

the assumptions that the data being regressed over is roughly linear, distributed approximately 

normal, contains no major outliers, and that the variable being regressed over is independent of 

the other variables. Least-squared regression is somewhat robust in terms of equal variance 

and violations of the normality assumption (see figure 4 and 5 to) (Earnst et al. 2017).  To 

calculate s(𝑏1) requires calculating the mean squared error of the line (Equation 4 and 5). Using 

t* and the degrees of freedom of the regression we can then calculate the p-value for that line 

using a Cumulative Density Function (CDF) on the T distribution. (Neter 1985).
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𝑠(𝑏1) =
𝑀𝑆𝐸

∑(𝑥𝑖 − 𝑥̅)
           (4) 

MSE =
∑(yi − yî)

2

n − 2
      (5)

 

 

Figure 4: Nb estimates from LDNe for bull trout starting 
at 50Nb under 7% decline, sampling 100 individuals 
and 400 SNPs.  

 
Figure 5: Nb estimates from LDNe for bull trout starting 
at 100 Nb under no decline, sampling 100 individuals 
and 400 SNPs. 

P value 

 

The p-value of a hypothesis describes the probability of obtaining the observed result assuming 

the null hypothesis is true.  Because we are looking at the p-value of the linear regression on Nb, 

we are considering the hypothesis 𝐻𝑜’ for the purposes of determining p-value.  This lets us set 

a p-value at which we can reject the assumption of the null hypothesis, essentially how willing 

we are to say that our assumption is wrong even if it is not.  One advantage of using a CDF 

function is it maintains sidedness allowing differentiation between significant positive and 

negative values.  To determine how this decision affects the tradeoff between sensitivity and 

specificity of the system, we decided on 3 different p-value cutoffs (85%, 90%, 95%) to analyze 

how p value corresponds to specificity.  In our classification system this p-value is the 
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discriminating characteristic that determines whether a population size change has been 

detected (Equation 6). 

 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻𝑜′ 𝑖𝑓 ∶  𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  
𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑐𝑢𝑡𝑜𝑓𝑓

2⁄   ⋁  1 −  𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  
 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑐𝑢𝑡𝑜𝑓𝑓

2⁄         (6)    

 

ROC Curves 

 

To create ROC curves for a specific permutation of our test factors requires multiple replicates. 

For each replicate we determined the p-value of that replicate using a CDF function on the t 

score. Using p-value as a determining variable requires that p-value correlates linearly with 

specificity. To test for this linearity we will count, for a range from 0 to 1 incrementing by 0.01, 

the number of simulations that reject 𝐻0’ at that p-value cutoff in our control simulations (0% 

decline) divided by the total number of simulations (Equation 6). This results in a range of 1- 

specificity (false positives) that will traverse from 0 to 1, keyed by p-value cutoff.  See Figure 9 

for a plot produced using this methodology. 

 

The steps above are applied to a set of simulation replicates that experienced a decline to get a 

range of sensitivities.  By matching p-value cutoff between the control and the decline 

sensitivities, we can create a graph of sensitivity over false positives, a ROC curve for each 

permutation of the test variables.  See Figures 10 to 13 for examples of plots produced by this 

methodology.  

Sensitivity and Specificity 

 

Sensitivity and specificity are a way to measure the accuracy of a system when statistical 

assumptions do not hold.    We will develop a confusion matrix for each system of control and 
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decline simulations, using 1000 control (no decline) and 1000 decline simulations, these allow 

us to calculate the sensitivity and specificity of each system of simulations.  This gives us a 

metric to determine how effective using Nb as an indicator of changes in Nc under various 

conditions.  For the purposes of our tests we decided that a sensitivity of 75% and a specificity 

of 90% would be an acceptable accuracy  

Results 

Specificity 

 

In both species, we observed, a high 

negative correlation between 

specificity and p-value (Figure 6).  

We also observed a slight increase in 

variance as we relaxed the p-value.  

In bull trout the variance in specificity 

increased as we permutated the 

factors we tested (Box 1). 

 

 

 

Figure 6: Distribution of Specificities (true negative results) 

 compared by species, wood frog (wFrog) and bull trout (bullT), 

 over p-value, combining all other variables tested. 
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Population Sampling 

 

The combination of both number of individuals and loci have the largest impact on sensitivity 

(Figure 7and 8), with the number of individuals having a larger effect than the number of loci. 

Under sampling individuals seems to have the biggest effect on depressing sensitivity, sampling 

many individuals less than the expected Nb severely diminishes the ability to detect population 

changes. This is shown by having our lowest sensitivity for both species (2.8% and 2.6%) and 

the highest (100%) present at the same Nb (Figure 7 and 8, 100 Nb). There is also an interesting 

result, 400 SNPs sampled has approximately equivalent sensitivity to doubling the individuals 

sampled at 100 SNPs in nearly all our test cases (Figure 7 and 8).  

 

Breeding Cycles 

 

The number of cycles monitored effected the ability to detect decline.  After 5 breeding cycles 

only, the highest levels of decline tested had an acceptable chance of being detected but only 

with higher sampling levels (100 Individuals).  At 7 breeding cycles we can reliably detect a 10% 

or greater decline when population sampling is high (Individuals >= expected Nb) except in the 

case of 25 Nb.  After 10 breeding cycles, the ability to detect a decline was significant at all 

except the smallest (5%) of decline, dependent on the number of SNPs and individuals sampled 

(Figure 7 and 8).
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Figure 7: Sensitivities by decline for wood frog at 90% p-value 
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Figure 8: Sensitivities by decline for bull trout at 90% p-value.
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P-Value 

 

Looking at the ROC curves allows us to determine how p-value affects sensitivity and 

specificity.  A ROC curve is generated for each permutation of our test variables, these can be 

used to evaluate the tradeoffs between sensitivity and specificity as we vary our determining 

characteristic, p-value for slope of the Nb regression.  The first observance is the linearity of the 

graph, indicating that specificity is highly correlated to p-value (Figure 9).  We can use these 

false positive values to create ROC curves for sensitivity.  Because of the linearity of false 

positives to p-value these ROC curves accurately reflect how monitoring at different p-values 

will affect both sensitivity and specificity at the various decline levels. By plotting the ROC 

curves for each parameterization of our test factors we can compare how sensitivity reacts to 

the different p values at different levels of decline Figures (10-13).  The closer the curve 

approaches the upper left corner (0,1) of the graph the more accurate that combination of 

variables is at detecting both stability and changes in the population (i.e. high sensitivity and 

specificity) (Figures 12 and 13), while a curve that approaches the line 𝑦 =  𝑥 means there is 

little difference between that detection method and deciding randomly (i.e. low sensitivity and 

specificity) (Figure 10).    
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Figure 9:Specificity Curve for bull trout at 50Nb, when sampling 100, 50 or 25 individuals from the youngest cohort 
and sampling 100, 200 0r 400 SNPs per individual.

 

Figure 10: ROC Curve for Individuals and Loci for bull trout at 50Nb and 7 breeding cycles under a 5% decline per 
year, when sampling 100, 50 or 25 individuals from the youngest cohort and sampling 100, 200 0r 400 SNPs per 

individual. 
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Figure 11: ROC Curve for Individuals and Loci for bull trout at 50Nb and 7 breeding cycles under a 7% decline per 
year, when sampling 100, 50 or 25 individuals from the youngest cohort and sampling 100, 200 0r 400 SNPs per 
individual. 

 

Figure 12:ROC Curve for Individuals and Loci for bull trout at 50Nb and 7 breeding cycles under a 10% decline per 
year, when sampling 100, 50 or 25 individuals from the youngest cohort and sampling 100, 200 0r 400 SNPs per 
individual. 
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Figure 13:ROC Curve for Individuals and Loci for bull trout at 50Nb and 7 breeding cycles under a 15% decline per 
year, when sampling 100, 50 or 25 individuals from the youngest cohort and sampling 100, 200 0r 400 SNPs per 
individual. 

 

Discussion 

 

Using Nb as an indicator of population declines was very successful under certain conditions, 

including after long periods of decline (10 Breeding Cycles), and when many individuals and loci 

were sampled (100 individuals and 400 SNPs).   We also identified three cases where Nb failed 

as an indicator (had a sensitivity less than 75%) for anything but the largest declines (declines > 

15%).  When Nb was low (Nb = 25), when monitoring time was short (5 breeding cycles), and 

when insufficient individuals were sampled in comparison to Nb (e.g. Nb > number of individuals 

sampled).   

 

The major variables of the study can be separated into 3 categories: those that are observed 

during testing and may affect sensitivity and specificity (Nb and decline), those that can be 

controlled (Individuals sampled, SNPs sampled, and number of cycles monitored), and those 

that are determined during the study design period (target specificity and sensitivity). 
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The first set of variables, those that are unknown during study design, must be estimated by 

some measure to determine acceptable ranges for the other variables.  An estimate of Nb helps 

set a minimum appropriate number of individuals to sample, and an estimate is needed for the 

minimum decline to identify to determine the correct p-value to use as a determining factor.   

 

In general sensitivity increases with an increased number of individuals and SNPs sampled, 

with increasing the number of individuals having a larger effect on sensitivity.  One noteworthy 

result was that by sampling at least as many individuals as your estimated Nb prevents under 

sampling, which causes higher variation in Nb estimations using LDNe and leads to lowered 

sensitivity. This observation has been corroborated by Ackerman in steelhead (Oncorhynchus 

mykiss) hatchery fish (Ackerman et al. 2016).   Increasing individuals sampled also had a larger 

effect on sensitivity than increasing SNPs. 

 

Sensitivity also increases with the number of breeding cycles monitored. After 7 cycles a 7% or 

greater decline was detectable in some cases, this increased to being able to detect a 5% or 

greater decline after 10 breeding cycles.  This can make monitoring challenging in populations 

with especially low Nb, because in the event of a slow steady decline, it can be difficult to detect 

in time to implement population saving management strategies.   

 

The last set of variables are specific to the study.  The acceptable rates for sensitivity and 

specificity are defined in a large part by an analysis based on the situation and the 

consequences of acting on incorrect information.  For example, when a recovery program to 

stabilize the species of interest is expensive or requires significant regulation to protect habitat, 

it would be safer to err on the side of concluding the population is stable even if it not.  This 

would require a higher specificity to limit the chances of a false positive result and therefore a 
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higher p-value.  On the other hand, if losing the population in question would be significant, such 

as in the case of near extinction, preservation would be of greater importance and therefore a 

higher sensitivity would be desired, necessitating a lower p-value. These types of concerns 

should be determined before the study begins.  These target sensitivities and specificities can 

be used to determine the p-value through use of ROC curves. Contingent on specificities strong 

relationship to p-value (Figure 4) and the strong linearity seen between false positive rate (1 −

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦) and p-value (Figure 7), this indicates that desired false positive rate 

(1 −  𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) is a good estimator of which p-value to use.  To determine if that 

specificity is appropriate for a set of parameters a ROC curve should be created to see if the 

target sensitivity is possible for that combination of variables. 

 

While using ROC Curves to decide on a specificity and sensitivity it should be noted that, a high 

specificity with a low sensitivity appears suitable for detecting stability in population size 

however, there could, in fact, be a high rate of false negative results despite the population 

being in decline. 

 

Some thought should be given to the life history and breeding patterns of the species being 

studied. The two species tested showed minimal difference in sensitivity and specificity, but this 

is no indication how other violations of the Wright-Fisher model, such as unequal gender ratios 

or nonrandom mating will affect sensitivity and specificity. 

Additional Studies 

 

This study is just a preliminary exploration of how Nb can be used to monitor populations for 

decline.  Further exploration into how life characteristics affect this methodology can be tested 

by expanding the number of species tested, especially if the additional species further stretch 
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assumptions of the Wright-Fisher model, such as species with unequal survival rates between 

the genders or different mating habits (e.g. monogamous family mating) would greatly increase 

the viability of this method in real world situations.  Another area of expansion would be 

exploring different decline scenarios, such as how easy it is to detect large one-time decline 

events or periodic declines with either periods of stability or growth in between.  How population 

size is reduced (e.g. reduction in only the adults or juveniles before the age of maturity) is 

another area that has much potential for exploration. 

 

  



www.manaraa.com

27 
 

 

 

References 

 

Ackerman, M. W., Hand, B. K., Waples, R. K., Luikart, G., Waples, R. S., Steele, C. A., ... & 

Campbell, M. R. (2017). Effective number of breeders from sibship reconstruction: empirical 

evaluations using hatchery steelhead. Evolutionary applications, 10(2), 146-160. 

 

Bernos, T. A., & Fraser, D. J. (2016). Spatiotemporal relationship between adult census size 

and genetic population size across a wide population size gradient. Molecular ecology, 25(18), 

4472-4487. 

 

Charlesworth, B. (2009). Fundamental concepts in genetics: effective population size and 

patterns of molecular evolution and variation. Nature reviews. Genetics, 10(3), 195. 

 

Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting 

recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001-2014. 

 

Collen, B., McRae, L., Deinet, S., De Palma, A., Carranza, T., Cooper, N., ... & Baillie, J. E. 

(2011). Predicting how populations decline to extinction. Philosophical Transactions of the Royal 

Society of London B: Biological Sciences, 366(1577), 2577-2586. 

 

Ernst, A. F., & Albers, C. J. (2017). Regression assumptions in clinical psychology research 

practice—a systematic review of common misconceptions. PeerJ, 5, e3323. 

 



www.manaraa.com

28 
 

Frankham, R. (2005). Genetics and extinction. Biological conservation, 126(2), 131-140. 

 

Hare, M. P., Nunney, L., Schwartz, M. K., Ruzzante, D. E., Burford, M., Waples, R. S., ... & 

Palstra, F. (2011). Understanding and estimating effective population size for practical 

application in marine species management. Conservation Biology, 25(3), 438-449. 

 

Hartl, D. L., Clark, A. G., & Clark, A. G. (2006). Principles of population genetics Fourth Edition 

Sinauer associates. 

 

Hill, W. G., & Robertson, A. (1968). Linkage disequilibrium in finite populations. TAG Theoretical 

and Applied Genetics, 38(6), 226-231. 

 

Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K., & Allendorf, F. W. (2010). Estimation of 

census and effective population sizes: the increasing usefulness of DNA-based approaches. 

Conservation Genetics, 11(2), 355-373. 

 

Mace, G. M., Collar, N. J., Gaston, K. J., Hilton‐ Taylor, C. R. A. I. G., Akçakaya, H. R., 

Leader‐ Williams, N. I. G. E. L., ... & Stuart, S. N. (2008). Quantification of extinction risk: 

IUCN's system for classifying threatened species. Conservation Biology, 22(6), 1424-1 

 

Neter, J., Kutner, M. H., & Wasserman, W. (1985). Applied linear statistical models: regression, 

analysis of variance, and experimental designs (2nd ed.). Homewood, IL: Irwin. 

 

Peng, B., & Amos, C. I. (2008). Forward-time simulations of non-random mating populations 

using simuPOP. Bioinformatics, 24(11), 1408-1409. 

 



www.manaraa.com

29 
 

Peng, B., & Kimmel, M. (2005). simuPOP: a forward-time population genetics simulation 

environment. Bioinformatics, 21(18), 3686-3687. 

 

Perrier, C., April, J., Cote, G., Bernatchez, L., & Dionne, M. (2016). Effective number of 

breeders in relation to census size as management tools for Atlantic salmon conservation in a 

context of stocked populations. Conservation genetics, 17(1), 31-44. 

 

Tallmon, D. A., Gregovich, D., Waples, R. S., Scott Baker, C., Jackson, J., Taylor, B. L., ... & 

Schwartz, M. K. (2010). When are genetic methods useful for estimating contemporary 

abundance and detecting population trends?. Molecular Ecology Resources, 10(4), 684-692. 

 

Tallmon, D. A., Waples, R. S., Gregovich, D., & Schwartz, M. K. (2012). Detecting population 

recovery using gametic disequilibrium-based effective population size estimates. Conservation 

Genetics Resources, 4(4), 987-989. 

 

Waples, R. S. (2006). A bias correction for estimates of effective population size based on 

linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7(2), 167-184. 

 

Waples, R. S., & Do, C. H. I. (2008). LDNE: a program for estimating effective population size 

from data on linkage disequilibrium. Molecular ecology resources, 8(4), 753-756. 

 

Waples, R. S., Do, C., & Chopelet, J. (2011). Calculating Ne and Ne/N in age‐ structured 

populations: a hybrid Felsenstein‐ Hill approach. Ecology, 92(7), 1513-1522. 

 



www.manaraa.com

30 
 

Waples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits 

explain key effective population size ratios across diverse taxa. Proceedings of the Royal 

Society of London B: Biological Sciences, 280(1768), 20131339. 

 

Waples, R. S., Antao, T., & Luikart, G. (2014). Effects of overlapping generations on linkage 

disequilibrium estimates of effective population size. Genetics, 197(2), 769-780. 

 

Whiteley, A. R., Coombs, J. A., Cembrola, M., O'Donnell, M. J., Hudy, M., Nislow, K. H., & 

Letcher, B. H. (2015). Effective number of breeders provides a link between interannual 

variation in stream flow and individual reproductive contribution in a stream salmonid. Molecular 

ecology, 24(14), 3585-3602. 

 

Whiteley, A. R., Coombs, J. A., O'Donnell, M. J., Nislow, K. H., & Letcher, B. H. (2017). Keeping 

things local: Subpopulation Nb and Ne in a stream network with partial barriers to fish 

migration. Evolutionary Applications, 10(4), 348-365. 

 

Yuan, X., Miller, D. J., Zhang, J., Herrington, D., & Wang, Y. (2012). An overview of population 

genetic data simulation. Journal of Computational Biology, 19(1), 42-54. 

 

Zhu, W., Zeng, N., & Wang, N. (2010). Sensitivity, specificity, accuracy, associated confidence 

interval and ROC analysis with practical SAS implementations. NESUG proceedings: health 

care and life sciences, Baltimore, Maryland, 19. 

 


